domingo, 17 de mayo de 2015

1.3 Tipos de funciones.

Unidad I. Funciones.
1.3 Tipos de funciones.

            Clasificación


1. Funciones algebraicas

En las funciones algebraicas las operaciones que hay que efectuar con la variable independiente son: la adición, sustracción, multiplicación, división, potenciación y radicación.
Las funciones algebraicas pueden ser:

Funciones explícitas

Si se pueden obtener las imágenes de x por simple sustitución.
f(x) = 5x − 2

Funciones implícitas

Si no se pueden obtener las imágenes de x por simple sustitución, sino que es preciso efectuar operaciones.
5x − y − 2 = 0

1.1 Funciones polinómicas

Son las funciones que vienen definidas por un polinomio.
f(x) = a+ a1x + a2x² + a2x³ +··· + anxn
Su dominio es R, es decir, cualquier número real tiene imagen.

1.1.1 Funciones constantes

El criterio viene dado por un número real.
f(x)= k
La gráfica es una recta horizontal paralela a al eje de abscisas.

1.1.2 Funciones polinómica de primer grado

f(x) = mx + n
Su gráfica es una recta oblicua, que queda definida por dos puntos de la función.
Son funciones de este tipo las siguientes:
Función Afín 
La función afín es del tipo:
y = mx + n
m es la pendiente de la recta.
La pendiente es la inclinación de la recta con respecto al eje de abscisas.
Dos rectas paralelas tienen la misma pendiente.
        gráfica

n es la ordenada en el origen y nos indica el punto de corte de la recta con el eje de ordenadas.
Función lineal
La función lineal es del tipo:
y = mx
Su gráfica es una línea recta que pasa por el origen de coordenadas.
y = 2x
x01234
y = 2x02468
              gráfica

Función identidad

f(x) = x
Su gráfica es la bisectriz del primer y tercer cuadrante.
gráfica

1.1.3 Funciones cuadráticas

f(x) = ax² + bx + c
Son funciones polinómicas es de segundo grado, siendo su gráfica una parábola.

1.2 Funciones racionales

El criterio viene dado por un cociente entre polinomios:
Función racional
El dominio lo forman todos los números reales excepto los valores de x que anulan el denominador.

1.3 Funciones radicales

El criterio viene dado por la variable x bajo el signo radical.
El dominio de una función irracional de índice impar es R.
El dominio de una función irracional de índice par está formado por todos los valores que hacen que el radicando sea mayor o igual que cero.

Son funciones definidas por distintos criterios, según los intervalos que se consideren.
Función Valor Absoluto
Las funciones en valor absoluto se transforman en funciones a trozos, siguiendo los siguientes pasos:
1. Se iguala a cero la función, sin el valor absoluto, y se calculan sus raíces.
2. Se forman intervalos con las raíces y se evalúa el signo de cada intervalo.
3. Definimos la función a trozos, teniendo en cuenta que en los intervalos donde la x es negativa se cambia el signo de la función.
4. Representamos la función resultante.
 
1. Función en valor absoluto
Función en valor absoluto
intervalos
Función en valor absoluto
función
D = R

Función Definidas a Trozos
Son funciones definidas por distintos criterios, según los intervalos que se consideren.
D. evitable
El dominio lo forman todos los números reales menos el 2.D. evitable

Función parte entera de x

Es una función que a cada número real hace corresponder el número entero inmediatamente inferior.
f(x) = E(x)
xf(x) = E(x)
00
0.50
0.90
11
1.51
1.91
22

Floor Function

Función mantisa

Función que hace corresponder a cada número el mismo número menos su parte entera.
f(x) = x - E(x)
xf(x) = x - E(x)
00
0.50.5
0.90.9
10
1.50.5
1.90.9
20

unción

Función signo

f(x) = sgn(x)
Función signo    
Función signo



2. Funciones trascendentes

La variable independiente figura como exponente, o como índice de la raíz, o se halla afectada del signo logaritmo o de cualquiera de los signos que emplea la trigonometría.

2.1 Funciones exponenciales

función
Sea a un número real positivo. La función que a cada número real x le hace corresponder la potencia ase llamafunción exponencial de base a y exponente x.

2.2 Funciones logarítmicas

La función logarítmica en base a es la función inversa de la exponencial en base a.
función
función

2.3 Funciones trigonométricas

Función seno

f(x) = sen x

Función coseno

f(x) = cos x

Función tangente

f(x) = tg x

Función cosecante

f(x) = cosec x

Función secante

f(x) = sec x

Función cotangente

f(x) = cotg x

No hay comentarios:

Publicar un comentario