1.3 Tipos de funciones.
1. Funciones algebraicas
En las funciones algebraicas las operaciones que hay que efectuar con la variable independiente son: la adición, sustracción, multiplicación, división, potenciación y radicación.
Las funciones algebraicas pueden ser:
Funciones explícitas
Si se pueden obtener las imágenes de x por simple sustitución.
f(x) = 5x − 2
Funciones implícitas
Si no se pueden obtener las imágenes de x por simple sustitución, sino que es preciso efectuar operaciones.
5x − y − 2 = 0
1.1 Funciones polinómicas
Son las funciones que vienen definidas por un polinomio.
f(x) = a0 + a1x + a2x² + a2x³ +··· + anxn
Su dominio es , es decir, cualquier número real tiene imagen.
1.1.1 Funciones constantes
El criterio viene dado por un número real.
f(x)= k
La gráfica es una recta horizontal paralela a al eje de abscisas.
1.1.2 Funciones polinómica de primer grado
f(x) = mx + n
Su gráfica es una recta oblicua, que queda definida por dos puntos de la función.
Son funciones de este tipo las siguientes:
Función Afín
La función afín es del tipo:
y = mx + n
m es la pendiente de la recta.
La pendiente es la inclinación de la recta con respecto al eje de abscisas.
Dos rectas paralelas tienen la misma pendiente.
n es la ordenada en el origen y nos indica el punto de corte de la recta con el eje de ordenadas.
Función lineal
La función lineal es del tipo:
y = mx
Su gráfica es una línea recta que pasa por el origen de coordenadas.
y = 2x
x | 0 | 1 | 2 | 3 | 4 |
---|---|---|---|---|---|
y = 2x | 0 | 2 | 4 | 6 | 8 |
Función identidad
f(x) = x
Su gráfica es la bisectriz del primer y tercer cuadrante.
1.1.3 Funciones cuadráticas
f(x) = ax² + bx + c
Son funciones polinómicas es de segundo grado, siendo su gráfica una parábola.
1.2 Funciones racionales
El criterio viene dado por un cociente entre polinomios:
El dominio lo forman todos los números reales excepto los valores de x que anulan el denominador.
1.3 Funciones radicales
El criterio viene dado por la variable x bajo el signo radical.
El dominio de una función irracional de índice impar es R.
El dominio de una función irracional de índice par está formado por todos los valores que hacen que el radicando sea mayor o igual que cero.
Son funciones definidas por distintos criterios, según los intervalos que se consideren.
Función Valor Absoluto
Las funciones en valor absoluto se transforman en funciones a trozos, siguiendo los siguientes pasos:
1. Se iguala a cero la función, sin el valor absoluto, y se calculan sus raíces.
2. Se forman intervalos con las raíces y se evalúa el signo de cada intervalo.
3. Definimos la función a trozos, teniendo en cuenta que en los intervalos donde la x es negativa se cambia el signo de la función.
4. Representamos la función resultante.
No hay comentarios:
Publicar un comentario